Electrical Components

## Section 7 - Technical Information and Technical Tables

In this section of the catalogue, ITC presents some information which may be of practical use to the designer, technician, installer of electrical and electronic products.

- Table of conversion factors (imperial/metric and metric/imperial)
- Decimal and metric equivalents of inch fractions
- Current, power and voltage
- Equivalence table between metric and imperial wire sections
- Table of induction motor current rating
- Temperature conversion table
- Stud selection chart
- Thread tables
- Ingress Protection (IP) table
- List of specific gravity of some materials
- RoHS Directive
- Technical information bulletin on IK ratings for enclosures


## Conversion Factors

| Imperial to Metric / S.I. | Metric / S.I. to Imperial |
| :---: | :---: |
| Length | Length |
| 1 inch $=25.4 \mathrm{~mm}$ | $1 \mathrm{~cm}=0.3937$ inches |
| $1 \mathrm{foot}=0.3034 \mathrm{~m}$ | $1 \mathrm{dm}=0.3281$ feet |
| 1 yard $=0.9144 \mathrm{~m}$ | $1 \mathrm{~m}=3.281$ feet |
| 1 mile $=1.60 \mathrm{~km}$ | $1 \mathrm{~m}=1.094 \mathrm{yds}$. |
| Surface | $1 \mathrm{~km}=0.6214$ miles |
| 1 sq . in $=6.452 \mathrm{~cm}^{2}$ | Surface |
| 1 sq foot $=0.093 \mathrm{~m}^{2}$ | $1 \mathrm{~cm}^{2}=0.155 \mathrm{sq}$ inch |
| 1 sq yard $=0.836 \mathrm{~m}^{2}$ | $1 \mathrm{~m}^{2}=10.76 \mathrm{sq} \mathrm{ft}$. |
| 1 acre $=0.405$ ha | $1 \mathrm{~m}^{2}=1.196 \mathrm{sq}$ yds. |
| 1 sq mile $=259.1 \mathrm{ha}$ | $1 \mathrm{ha}=2.471$ acres |
| 1 sq mile $=2.590 \mathrm{~km}^{2}$ | $1 \mathrm{~km}^{2}=0.386$ sq miles. |
| Volume | Volume |
| 1 cubic inch $=16.3871 \mathrm{~cm}^{3}$ | $1 \mathrm{~cm}^{3}=0.061$ cubic in. |
| 1 cubic foot $=0.02832 \mathrm{~m}^{3}$ | $1 \mathrm{dm}^{3}=0.035$ cubic ft. |
| 1 cubic yard $=0.765 \mathrm{~m}^{3}$ | $1 \mathrm{~m}^{3}=1.308$ cubic yds. |
| Capacity | Capacity |
| 1 fluid oz. $=28.4131 \mathrm{ml}$. | $1 \mathrm{l}=0.880$ pint |
| 1 pint = 1.137 l | $1 \mathrm{l}=0.9083$ liq quart (U.S.) |
| 1 liq quart (U.S.) = 0.94631 | $1 \mathrm{l}=0.220$ gallon (imperial) |
| 1 gallon (imperial) $=4.546 \mathrm{l}$ | $1 \mathrm{l}=0.2642$ gallon (U.S.) |
| 1 gallon (U.S.) = 3.785 l | Weight |
| Weight | $1 \mathrm{~g}=0.032$ ounce (Troy) |
| 1 ounce (Troy) $=31.103 \mathrm{~g}$ | $1 \mathrm{~g}=0.035$ ounce (avdp.) |
| 1 ounce (avdp.) $=28.35 \mathrm{~g}$ | $1 \mathrm{~kg}=2.679 \mathrm{lb}$ (Troy) |
| 1 pound (Troy) $=373.242 \mathrm{~g}$ | $1 \mathrm{~kg}=2.205 \mathrm{lb}$ (avdp.) |
| 1 pound (avdp.) $=453.592 \mathrm{~g}$ | $1 \mathrm{t}=1.102$ short tons |
| 1 short ton $=0.907 \mathrm{t}$ | $1 \mathrm{t}=0.9843$ long tons. |
| 1 long ton $=1.016 \mathrm{t}$ | Velocity |
| Velocity | $1 \mathrm{~m} / \mathrm{s}=3.2808 \mathrm{fps}$ |
| $1 \mathrm{fps}=0.3048 \mathrm{~m} / \mathrm{s}$ | $1 \mathrm{~m} / \mathrm{s}=196.85 \mathrm{fpm}$ |
| $1 \mathrm{fpm}=0.00508 \mathrm{~m} / \mathrm{s}$ | $1 \mathrm{~km} / \mathrm{h}=0.62137 \mathrm{mph}$ |
| $1 \mathrm{mph}=1.60934 \mathrm{~km} / \mathrm{h}$ | Power |
| Power | $1 \mathrm{~W}=4.1829 \mathrm{BTU} / \mathrm{h}$ (intl.) |
| $1 \mathrm{BTU} / \mathrm{h}$ (intl.) $=0.23907 \mathrm{~W}$ | $1 \mathrm{~kW}=0.9478 \mathrm{BTU} / \mathrm{s}$ (intl.) |
| $1 \mathrm{BTU} / \mathrm{s}$ (intl. $)=1.05506 \mathrm{~kW}$ | $1 \mathrm{~kW}=0.7457 \mathrm{HP}$ |
| $1 \mathrm{HP}=1.341 \mathrm{~kW}$ | Temperature |
| Temperature | $1{ }^{\circ} \mathrm{C}=0.555 \times\left({ }^{\circ} \mathrm{F}-32\right)$ |
| $1{ }^{\circ} \mathrm{F}=1.8 \mathrm{x}^{\circ} \mathrm{C}+32$ | Torque |
| Torque $1 \mathrm{lb}-\mathrm{ft}=1.355 \mathrm{Nm}$ | $1 \mathrm{Nm}=0.738 \mathrm{lb}-\mathrm{ft}$ |
|  | Energy |
| Energy | $1 \mathrm{~J}=0.730 \mathrm{ft}-\mathrm{lb}$ |
| $1 \mathrm{ft}-\mathrm{lb}=1 \mathrm{~J}$ | $1 \mathrm{kWh}=3412 \mathrm{BTU}$ |
| Pressure <br> $1 \mathrm{lb} / \mathrm{sq}$ in $=6.8966 \mathrm{kPa}$ | Pressure <br> $1 \mathrm{kPa}=0.145 \mathrm{lb} / \mathrm{sq}$ in |

## Fractions / Decimal and metric equivalents

| Fraction of inch | decimal equiv | mm equivalent |
| :---: | :---: | :---: |
| 1/64" | 0.0156 | 0.3968 |
| 1/32" | 0.0313 | 0.7929 |
| 3/64" | 0.0469 | 1.1898 |
| 1/16" | 0.0625 | 1.5867 |
| 5/64" | 0.0781 | 1.9836 |
| 3/32" | 0.0937 | 2.3805 |
| 7/64" | 0.1093 | 2.7774 |
| 1/8" | 0.1249 | 3.1743 |
| 9/64" | 0.1405 | 3.5712 |
| 5/32" | 0.1561 | 3.9681 |
| 11/64" | 0.1717 | 4.3650 |
| 3/16" | 0.1873 | 4.7619 |
| 13/64" | 0.2029 | 5.1588 |
| 7/32" | 0.2185 | 5.5557 |
| 15/64" | 0.2341 | 5.9526 |
| $1 / 4^{\prime \prime}$ | 0.2500 | 6.3500 |
| 17/64" | 0.2653 | 6.7464 |
| 9/32" | 0.2809 | 7.1433 |
| 19/64" | 0.2965 | 7.5402 |
| 5/16" | 0.3121 | 7.9371 |
| 21/64" | 0.3277 | 8.3340 |
| 11/32" | 0.3433 | 8.7309 |
| 23/64" | 0.3589 | 9.1278 |
| 3/8" | 0.3745 | 9.5247 |
| 25/64" | 0.3901 | 9.9216 |
| 13/32" | 0.4057 | 10.3185 |
| 27/64" | 0.4213 | 10.7154 |
| 7/16" | 0.4369 | 11.1123 |
| 29/64" | 0.4525 | 11.5092 |
| 15/32" | 0.4681 | 11.9061 |
| 31/64" | 0.4837 | 12.3030 |
| $1 / 2$ " | 0.5000 | 12.7000 |


| Fraction of inch | decimal equiv | mm equivalent |
| :---: | :---: | :---: |
| 33/64" | 0.5149 | 13.0968 |
| 17/32" | 0.5305 | 13.4937 |
| 35/64" | 0.5461 | 13.8906 |
| 9/16" | 0.5617 | 14.2875 |
| 37/64" | 0.5773 | 14.6844 |
| 19/32" | 0.5929 | 15.0813 |
| 39/64" | 0.6085 | 15.4782 |
| 5/8" | 0.6241 | 15.8751 |
| 41/64" | 0.6397 | 16.2720 |
| 21/32" | 0.6553 | 16.6689 |
| 43/64" | 0.6709 | 17.0658 |
| 11/16" | 0.6865 | 17.4627 |
| 45/64" | 0.7021 | 17.8596 |
| 23/32" | 0.7177 | 18.2565 |
| 47/64" | 0.7333 | 18.6534 |
| $3 / 4$ " | 0.7500 | 19.0500 |
| 49/64" | 0.7645 | 19.4472 |
| 25/32" | 0.7801 | 19.8441 |
| 51/64" | 0.7957 | 20.2410 |
| 13/16" | 0.8113 | 20.6379 |
| 53/64" | 0.8269 | 21.0348 |
| 27/32" | 0.8425 | 21.4317 |
| 55/64" | 0.8581 | 21.8286 |
| 7/8" | 0.8737 | 22.2255 |
| 57/64" | 0.8893 | 22.6224 |
| 29/32" | 0.9049 | 23.0193 |
| 59/64" | 0.9205 | 23.4162 |
| 15/16" | 0.9361 | 23.8131 |
| 61/64" | 0.9517 | 24.2100 |
| 31/32" | 0.9673 | 24.6069 |
| 63/64" | 0.9829 | 25.0038 |
| 1" | 1.0000 | 25.4000 |

## Current, Power and Voltages

| Line Current (in Amp) given the Power (in kVA) and the Line Voltage (in Volt) of a 1-phase System |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power | Line Voltage (Volt) |  |  |  |  |  |
| (KVA) | 120 | 240 | 480 | 600 | 2400 | 4160 |
| 3 | 25.0 | 12.5 | 6.3 | 5.0 | 1.3 | 0.7 |
| 5 | 41.7 | 20.8 | 10.4 | 8.3 | 2.1 | 1.2 |
| 7.5 | 62.5 | 31.3 | 15.6 | 12.5 | 3.1 | 1.8 |
| 10 | 83.3 | 41.7 | 20.8 | 16.7 | 4.2 | 2.4 |
| 15 | 125.0 | 62.5 | 31.3 | 25.0 | 6.3 | 3.6 |
| 25 | 208.3 | 104.2 | 52.1 | 41.7 | 10.4 | 6.0 |
| 37.5 | 312.5 | 156.3 | 78.1 | 62.5 | 15.6 | 9.0 |
| 50 | 416.7 | 208.3 | 104.2 | 83.3 | 20.8 | 12.0 |
| 75 | 625.0 | 312.5 | 156.3 | 125.0 | 31.3 | 18.0 |
| 100 | 833.3 | 416.7 | 208.3 | 166.7 | 41.7 | 24.0 |
| 150 | 1250.0 | 625.0 | 312.5 | 250.0 | 62.5 | 36.1 |
| 200 | 1666.7 | 833.3 | 416.7 | 333.3 | 83.3 | 48.1 |
| 250 | 2083.3 | 1041.7 | 520.8 | 416.7 | 104.2 | 60.1 |
| 333 | 2775.0 | 1387.5 | 693.8 | 555.0 | 138.8 | 80.0 |


| Line Current (in Amp) given the Power (in kVA) and the Line Voltage (in Volt) of a 3-phase System |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| Power <br> (KVA) | Line Voltage (Volt) |  |  |  |  |  |
|  | 208 | 240 | 480 | 600 | 2400 | 4160 |
| 6 | 16.7 | 14.4 | 7.2 | 5.8 | 1.4 | 0.8 |
| 10 | 27.8 | 24.1 | 12.0 | 9.6 | 2.4 | 1.4 |
| 15 | 41.6 | 36.1 | 18.0 | 14.4 | 3.6 | 2.1 |
| 30 | 83.3 | 72.2 | 36.1 | 28.9 | 7.2 | 4.2 |
| 45 | 124.9 | 108.3 | 54.1 | 43.3 | 10.8 | 6.2 |
| 50 | 138.8 | 120.3 | 60.1 | 48.1 | 12.0 | 6.9 |
| 75 | 208.2 | 180.4 | 90.2 | 72.2 | 18.0 | 10.4 |
| 112.5 | 312.3 | 270.6 | 135.3 | 108.3 | 27.1 | 15.6 |
| 150 | 416.4 | 360.9 | 180.4 | 144.3 | 36.1 | 20.8 |
| 225 | 624.6 | 541.3 | 270.6 | 216.5 | 54.1 | 31.2 |
| 300 | 832.7 | 721.7 | 360.9 | 288.7 | 72.2 | 41.6 |
| 450 | 1249.1 | 1082.6 | 541.3 | 433.0 | 108.3 | 62.5 |
| 500 | 1387.9 | 1202.8 | 601.4 | 481.1 | 120.3 | 69.4 |
| 600 | 1665.5 | 1443.4 | 721.7 | 577.4 | 144.3 | 83.3 |
| 750 | 2081.9 | 1804.3 | 902.1 | 721.7 | 180.4 | 104.1 |
| 1000 | 2775.8 | 2405.7 | 1202.8 | 962.3 | 240.6 | 138.8 |
| 1500 | 4163.7 | 3608.5 | 1804.3 | 1443.4 | 360.9 | 208.2 |
| 2000 | 5551.6 | 4811.4 | 2405.7 | 1924.6 | 481.1 | 277.6 |

[^0]
## Wire Cross Sections, Metric Equivalent and Wire Diameters

| AWG | MM2 | MM2 | AWG/MCM |
| :---: | :---: | :---: | :---: |
| 30 | 0.05 |  |  |
| 28 | 0.08 |  | -2,000 |
| 26 | 0.14 |  | - 1,750 |
| 24 | 0.25 | 0 | - 1,500 |
| 22 | 0.34 | 630 | - 1,000 |
| 21 | 0.38 |  | - 800 |
| 22 | 0.50 UL |  | - 750 |
| 20 | 0.50 |  | - 7000 |
| 19 | 0.75 UL | 300 | - 500 |
| 18 | 0.75 |  | - 400 |
| 18 UL | 1.0 UL | 185 | - 350 |
| 17 | 1.0 | 150 | $\begin{array}{r}\text { a } \\ -350 \\ \hline\end{array}$ |
| 16 | 1.5 | 0 | - 4/0 |
| 14 | 2.5 |  | - 3/0 |
| 12 | 4 |  |  |
| 10 | 6 |  | - $1 / 0$ |
| 8 | 10 |  |  |
| 6 | 16 |  | -2 |
| 4 | 25 |  |  |
| 2 | 35 |  |  |
| 1-1/0 | 50 |  |  |
| 2/0 | 70 |  |  |
| 3/0 | 95 |  |  |
| 4/0 | 120 |  | 12 |
| 300 MCM | 150 |  | - 14 |
| 350 MCM | 185 |  | 16 |
| 500 MCM | 240 |  | -20 |
| 600 MCM | 300 |  |  |
| 750 MCM | 400 |  |  |
| 1000 MCM | 500 |  |  |

Note: the values in this table are given as a guide only. Actual diameters may be different depending on stranding and other construction details.
Resistors Colour Codes

| Number | Colour |
| :---: | :--- |
| 0 | Black |
| 1 | Brown |
| 2 | Red |
| 3 | Orange |
| 4 | Yellow |
| 5 | Green |
| 6 | Blue |
| 7 | Purple |
| 8 | Grey |
| 9 | White |

## Induction Motor Current Rating

(1-Phase and 3-Phase @60Hz) (uL 508)

|  | 1-phase |  | 3-phase |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| HP | $\mathbf{1 1 0 V}$ | $\mathbf{2 2 0 V}$ | $\mathbf{2 2 0 V}$ | 440V | 600V |
| $1 / 4$ | 5.8 | 2.9 |  |  |  |
| $\mathbf{1 / 3}$ | 7.2 | 3.6 |  |  |  |
| $1 / 2$ | 9.8 | 4.9 | 2.0 | 1.0 | 0.8 |
| $3 / 4$ | 13.8 | 6.9 | 2.8 | 1.4 | 1.1 |
| $\mathbf{1}$ | 16.0 | 8.0 | 3.6 | 1.8 | 1.4 |
| $\mathbf{1 1 / 2}$ | 20.0 | 10.0 | 5.2 | 2.6 | 2.1 |
| $\mathbf{2}$ | 24.0 | 12.0 | 6.8 | 3.4 | 2.7 |
| $\mathbf{3}$ | 34.0 | 17.0 | 9.6 | 4.8 | 3.9 |
| $\mathbf{5}$ | 56.0 | 28.0 | 15.2 | 7.6 | 6.1 |
| $\mathbf{7} 1 / 2$ | 80.0 | 40.0 | 22.0 | 11.0 | 9.0 |
| $\mathbf{1 0}$ | 100.0 | 50.0 | 28.0 | 14.0 | 11.0 |
| $\mathbf{1 5}$ | 136.0 | 68.0 | 42.0 | 21.0 | 17.0 |
| $\mathbf{2 0}$ |  | 88.0 | 54.0 | 27.0 | 22.0 |
| $\mathbf{2 5}$ |  | 110.0 | 68.0 | 34.0 | 27.0 |
| $\mathbf{3 0}$ |  | 136.0 | 80.0 | 40.0 | 32.0 |
| $\mathbf{4 0}$ |  | 176.0 | 104.0 | 52.0 | 41.0 |
| $\mathbf{5 0}$ |  | 216.0 | 130.0 | 65.0 | 52.0 |
| $\mathbf{6 0}$ |  |  | 154.0 | 77.0 | 62.0 |
| 75 |  |  | 192.0 | 96.0 | 77.0 |
| $\mathbf{1 0 0}$ |  |  | 248.0 | 124.0 | 99.0 |
| $\mathbf{1 2 5}$ |  |  | 312.0 | 156.0 | 125.0 |
| $\mathbf{1 5 0}$ |  |  | 360.0 | 180.0 | 144.0 |
| $\mathbf{2 0 0}$ |  |  | 480.0 | 240.0 | 192.0 |
| $\mathbf{2 5 0}$ |  |  | 604.0 | 302.0 | 242.0 |

Note: the values in this table must be used as a guide only. Actual current may be different from the average calculated values above, especially in case of motors having a special construction, or special purpose. Always check the rated current value appearing on the motor nameplate.

Electrical Components

## Temperature Conversion Table

```
\({ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32\)
\({ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)\)
```

Fahrenheit vs. Centigrade (Celsius)

| ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | 16.00 | -8.89 | 57.00 | 13.89 | 98.00 | 36.67 | 178.00 | 81.11 | 350.00 | 176.67 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -100.00 | -73.33 | 17.00 | -8.33 | 58.00 | 14.44 | 99.00 | 37.22 | 180.00 | 82.22 | 355.00 | 179.44 |
| -95.00 | -70.56 | 18.00 | -7.78 | 59.00 | 15.00 | 100.00 | 37.78 | 182.00 | 83.33 | 360.00 | 182.22 |
| -90.00 | -67.78 | 19.00 | -7.22 | 60.00 | 15.56 | 102.00 | 38.89 | 184.00 | 84.44 | 365.00 | 185.00 |
| -85.00 | -65.00 | 20.00 | -6.67 | 61.00 | 16.11 | 104.00 | 40.00 | 186.00 | 85.56 | 370.00 | 187.78 |
| -80.00 | -62.22 | 21.00 | -6.11 | 62.00 | 16.67 | 106.00 | 41.11 | 188.00 | 86.67 | 375.00 | 190.56 |
| -75.00 | -59.44 | 22.00 | -5.56 | 63.00 | 17.22 | 108.00 | 42.22 | 190.00 | 87.78 | 380.00 | 193.33 |
| -70.00 | -56.67 | 23.00 | -5.00 | 64.00 | 17.78 | 110.00 | 43.33 | 192.00 | 88.89 | 385.00 | 196.11 |
| -65.00 | -53.89 | 24.00 | -4.44 | 65.00 | 18.33 | 112.00 | 44.44 | 194.00 | 90.00 | 390.00 | 198.89 |
| -60.00 | -51.11 | 25.00 | -3.89 | 66.00 | 18.89 | 114.00 | 45.56 | 196.00 | 91.11 | 395.00 | 201.67 |
| -55.00 | -48.33 | 26.00 | -3.33 | 67.00 | 19.44 | 116.00 | 46.67 | 198.00 | 92.22 | 400.00 | 204.44 |
| -50.00 | -45.56 | 27.00 | -2.78 | 68.00 | 20.00 | 118.00 | 47.78 | 200.00 | 93.33 | 405.00 | 207.22 |
| -45.00 | -42.78 | 28.00 | -2.22 | 69.00 | 20.56 | 120.00 | 48.89 | 205.00 | 96.11 | 410.00 | 210.00 |
| -40.00 | -40.00 | 29.00 | -1.67 | 70.00 | 21.11 | 122.00 | 50.00 | 210.00 | 98.89 | 415.00 | 212.78 |
| -35.00 | -37.22 | 30.00 | -1.11 | 71.00 | 21.67 | 124.00 | 51.11 | 215.00 | 101.67 | 420.00 | 215.56 |
| -30.00 | -34.44 | 31.00 | -0.56 | 72.00 | 22.22 | 126.00 | 52.22 | 220.00 | 104.44 | 425.00 | 218.33 |
| -28.00 | -33.33 | 32.00 | 0.00 | 73.00 | 22.78 | 128.00 | 53.33 | 225.00 | 107.22 | 430.00 | 221.11 |
| -26.00 | -32.22 | 33.00 | 0.56 | 74.00 | 23.33 | 130.00 | 54.44 | 230.00 | 110.00 | 435.00 | 223.89 |
| -24.00 | -31.11 | 34.00 | 1.11 | 75.00 | 23.89 | 132.00 | 55.56 | 235.00 | 112.78 | 440.00 | 226.67 |
| -22.00 | -30.00 | 35.00 | 1.67 | 76.00 | 24.44 | 134.00 | 56.67 | 240.00 | 115.56 | 445.00 | 229.44 |
| -20.00 | -28.89 | 36.00 | 2.22 | 77.00 | 25.00 | 136.00 | 57.78 | 245.00 | 118.33 | 450.00 | 232.22 |
| -18.00 | -27.78 | 37.00 | 2.78 | 78.00 | 25.56 | 138.00 | 58.89 | 250.00 | 121.11 | 455.00 | 235.00 |
| -16.00 | -26.67 | 38.00 | 3.33 | 79.00 | 26.11 | 140.00 | 60.00 | 255.00 | 123.89 | 460.00 | 237.78 |
| -14.00 | -25.56 | 39.00 | 3.89 | 80.00 | 26.67 | 142.00 | 61.11 | 260.00 | 126.67 | 465.00 | 240.56 |
| -12.00 | -24.44 | 40.00 | 4.44 | 81.00 | 27.22 | 144.00 | 62.22 | 265.00 | 129.44 | 470.00 | 243.33 |
| -10.00 | -23.33 | 41.00 | 5.00 | 82.00 | 27.78 | 146.00 | 63.33 | 270.00 | 132.22 | 475.00 | 246.11 |
| -8.00 | -22.22 | 42.00 | 5.56 | 83.00 | 28.33 | 148.00 | 64.44 | 275.00 | 135.00 | 480.00 | 248.89 |
| -6.00 | -21.11 | 43.00 | 6.11 | 84.00 | 28.89 | 150.00 | 65.56 | 280.00 | 137.78 | 485.00 | 251.67 |
| -4.00 | -20.00 | 44.00 | 6.67 | 85.00 | 29.44 | 152.00 | 66.67 | 285.00 | 140.56 | 490.00 | 254.44 |
| -2.00 | -18.89 | 45.00 | 7.22 | 86.00 | 30.00 | 154.00 | 67.78 | 290.00 | 143.33 | 495.00 | 257.22 |
| 0.00 | -17.78 | 46.00 | 7.78 | 87.00 | 30.56 | 156.00 | 68.89 | 295.00 | 146.11 | 500.00 | 260.00 |
| 2.00 | -16.67 | 47.00 | 8.33 | 88.00 | 31.11 | 158.00 | 70.00 | 300.00 | 148.89 | 550.00 | 287.78 |
| 4.00 | -15.56 | 48.00 | 8.89 | 89.00 | 31.67 | 160.00 | 71.11 | 305.00 | 151.67 | 600.00 | 315.56 |
| 6.00 | -14.44 | 49.00 | 9.44 | 90.00 | 32.22 | 162.00 | 72.22 | 310.00 | 154.44 | 650.00 | 343.33 |
| 8.00 | -13.33 | 50.00 | 10.00 | 91.00 | 32.78 | 164.00 | 73.33 | 315.00 | 157.22 | 700.00 | 371.11 |
| 10.00 | -12.22 | 51.00 | 10.56 | 92.00 | 33.33 | 166.00 | 74.44 | 320.00 | 160.00 | 750.00 | 398.89 |
| 11.00 | -11.67 | 52.00 | 11.11 | 93.00 | 33.89 | 168.00 | 75.56 | 325.00 | 162.78 | 800.00 | 426.67 |
| 12.00 | -11.11 | 53.00 | 11.67 | 94.00 | 34.44 | 170.00 | 76.67 | 330.00 | 165.56 | 850.00 | 454.44 |
| 13.00 | -10.56 | 54.00 | 12.22 | 95.00 | 35.00 | 172.00 | 77.78 | 335.00 | 168.33 | 900.00 | 482.22 |
| 14.00 | -10.00 | 55.00 | 12.78 | 96.00 | 35.56 | 174.00 | 78.89 | 340.00 | 171.11 | 950.00 | 510.00 |
| 15.00 | -9.44 | 56.00 | 13.33 | 97.00 | 36.11 | 176.00 | 80.00 | 345.00 | 173.89 | 1000.00 | 537.78 |

## Stud Selection Chart

| Stud Size | nominal stud | $\begin{aligned} & \mathrm{mm} \\ & \emptyset \end{aligned}$ | $\begin{aligned} & \text { inch } \\ & \emptyset \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\bullet$ | \#2 | 2.2 | . 087 |
| $\bullet$ | \#3 | 2.7 | . 106 |
| $\bigcirc$ | \#4 | 3.2 | . 126 |
|  | \#6 | 3.7 | . 146 |
|  | \#8 | 4.3 | . 169 |
|  | \#10 | 5.3 | . 209 |
|  | 1/4 | 6.4 | . 25 |
|  | 5/16 | 8.4 | . 33 |
|  | 3/8 | 10,5 | . 413 |
|  | 7/16 | 11.5 | . 453 |
|  | 1/2 | 13.0 | . 51 |
|  | 9/16 | 15.0 | . 59 |


| Stud Size | nominal <br> stud | mm <br> $\emptyset$ | inch <br> $\emptyset$ |
| :--- | :--- | :--- | :--- |
|  | $11 / 16$ | 19.0 | .75 |
|  | $3 / 4$ | 21.0 | .83 |
|  | $7 / 8$ | 23.0 | .91 |
|  | $15 / 16$ | 25.0 | .98 |
|  |  |  |  |

Electrical Components

## Thread Tables

| ISO Thread | Pitch $(\mathrm{mm})$ | D1 $(\mathrm{mm})$ | Core D2 $(\mathrm{mm})$ | Cutout $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| $10 \times 1.0$ | 1.0 | 10 | 9.0 | 10.2 |
| $M 12 \times 1.5$ | 1.5 | 12 | 10.5 | 12.2 |
| $M 16 \times 1.5$ | 1.5 | 16 | 14.5 | 16.2 |
| M20 1.5 | 1.5 | 20 | 18.5 | 20.2 |
| M25 1.5 | 1.5 | 25 | 23.5 | 25.2 |
| M32 1.5 | 1.5 | 32 | 30.5 | 32.2 |
| $M 40 \times 1.5$ | 1.5 | 40 | 38.5 | 40.2 |
| $M 50 \times 1.5$ | 1.5 | 50 | 48.5 | 50.2 |
| $M 63 \times 1.5$ | 1.5 | 63 | 61.5 | 63.2 |

## METRIC ISO Thread According to EN 60423



| Pg Thread | Pitch $(\mathrm{mm})$ | D1 $(\mathrm{mm})$ | Core D2 $(\mathrm{mm})$ | Cutout $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| Pg 7 | 1.270 | 12.5 | 11.28 | 12.7 |
| Pg 9 | 1.410 | 15.2 | 13.86 | 15.4 |
| Pg 11 | 1.410 | 18.6 | 17.26 | 18.8 |
| Pg 13.5 | 1.410 | 20.4 | 19.06 | 20.7 |
| Pg 16 | 1.410 | 22.5 | 21.16 | 22.8 |
| Pg 21 | 1.588 | 28.3 | 26.78 | 28.6 |
| Pg 29 | 1.588 | 37.0 | 35.48 | 37.4 |
| Pg 36 | 1.588 | 47.0 | 45.48 | 47.5 |
| Pg 42 | 1.588 | 54.0 | 52.48 | 54.5 |
| Pg 48 | 1.588 | 59.3 | 57.78 | 59.8 |

## PG Thread according to DIN 40430



| NPT Thread | Pitch $(\mathrm{mm})$ | D1 $(\mathrm{mm})$ | Threads/inch | Cutout $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| $3 / 8^{\prime \prime}$ | 1.411 | 17.055 | 18 | 17.2 |
| $1 / 2 "$ | 1.814 | 21.223 | 14 | 21.4 |
| $3 / 4 "$ | 1.814 | 26.568 | 14 | 26.9 |
| $1 "$ | 2.208 | 33.227 | $111 / 2 "$ | 33.7 |
| $11 / 4 "$ | 2.208 | 41.984 | $111 / 2 "$ | 42.4 |
| $11 / 2 "$ | 2.208 | 48.053 | $11 \frac{1}{2 \prime \prime}$ | 48.5 |
| $2 "$ | 2.208 | 60.091 | $111 / 2 "$ | 60.2 |

## NPT Thread



| ISO "G" <br> Thread | Pitch (mm) | D2. (mm) | Core D2 (mm) | Cutout (mm) |
| :--- | :--- | :--- | :--- | :--- |
| $3 / 8 "$ | 1.337 | 16.662 | 14.950 | 17.0 |
| $1 / 2 "$ | 1.814 | 20.955 | 18.631 | 21.3 |
| $3 / 4 "$ | 1.814 | 26.441 | 24.117 | 26.8 |
| $1 "$ | 2.309 | 33.249 | 30.291 | 33.7 |
| $11 / 4 "$ | 2.309 | 41.910 | 38.952 | 42.4 |
| $1 \frac{1}{2 \prime \prime}$ | 2.309 | 47.803 | 44.845 | 48.3 |
| $2 "$ | 2.309 | 60.091 | 56.656 | 60.2 |

ISO 228 ("Gas") Thread


## Ingress Protection (IP)

Ingress protection for Low Voltage Enclosures is defined by the European Standard IEC 529 as a code comprising 2 letters (IP) and 2 digits.

The first digit (between 0 and 6 ) indicates the degree of protection provided with respect to the equipment contained in the enclosure.

The second digit (between 0 and 9 ) indicates the degree of protection with respect to the harmful effects of liquid penetration.

Since the definitions are different, there is no exact equivalence between European IP Ingress Protection ratings, and North American NEMA ratings.
1 st digit

| IP | Description |
| :--- | :--- |
| $\mathbf{0}$ | No protection |
| $\mathbf{1}$ | Protection against solid objects greater than <br> 50 mm |
| $\mathbf{2}$ | Protection against solid objects greater than <br> 12.5 mm |
| $\mathbf{3}$ | Protection against solid objects greater than <br> 2.5 mm |
| $\mathbf{4}$ | Protection against solid objects greater than <br> 1.0 mm |
| $\mathbf{5}$ | Protection against penetration of dust |
| $\mathbf{6}$ | Dust-tight |

$2^{\text {nd }}$ digit

| IP | Description |
| :--- | :--- |
| $\mathbf{0}$ | No protection |
| $\mathbf{1}$ | Protection against dripping water |
| $\mathbf{2}$ | Protection against dripping water when <br> tilted up to 15 |
| $\mathbf{3}$ | Protection against spraying water |
| $\mathbf{4}$ | Protection against splashing water |
| $\mathbf{5}$ | Protection against water jets |
| $\mathbf{6}$ | Protection against heavy seas |
| $\mathbf{7}$ | Protection against the effects of <br> immersion |
| $\mathbf{8}$ | Protection against submersion |
| 9 K | Protection against high pressure, high <br> temperature liquid $\left(80^{\circ} \mathrm{C}\right)$ or steam |

Example: an enclosure rated IP54 is protected against penetration of dust, and against splashing water.

## Specific Gravity of Common Materials

| Material | Specific gravity (Kg/dm $\mathbf{3}^{\mathbf{3}} \mathbf{)}$ |
| :--- | :--- |
| Acrylonitryl-Buthadiene-Styrene (ABS) | $0.99-1.01$ |
| Air (dry) | 0.0013 |
| Aluminum | 2.70 |
| Brass | $8.40-8.70$ |
| Bronze | $7.40-8.90$ |
| Carbon Monoxide | 0.0019 |
| Cast iron | 7.10 |
| Cellulose | 1.50 |
| Copper | $8.80-8.92$ |
| Diamond | 3.51 |
| Diesel Oil | $0.80-0.85$ |
| Epoxy Resin | 1.20 |
| Ethyl Alcohol 95\% | 0.81 |
| Gasoline | $0.70-0.76$ |
| Glass | $2.40-2.70$ |
| Gold | 19.30 |
| Grease | $0.92-0.94$ |
| Hydrogen | 0.0009 |
| Ice | 0.90 |
| Lead | 11.34 |
| Mercury | 13.60 |
| Mineral Oil | $0.85-0.95$ |
| Oxygen | 0.0015 |
| Paper | $0.70-1.10$ |
| Platinum | 21.45 |
| Polyamide (PA) | $1.04-1.50$ |
| Polypropylene (PP) | 0.91 |
| Polystyrene (PS) | $0.94-1.00$ |
| Polyvinyl Chloride, soft (PVC) | $0.96-0.98$ |
| Rubber | $1.70-2.20$ |
| Silver | 10.50 |
| Steel | 7.85 |
| Sulphuric Acid | 1.83 |
| Tin | 7.28 |
| Water | 1.00 |
| Zinc | 7.14 |
|  |  |

Note: the values in this table are average values and must be used as a guide only. In most cases, specific gravity (AKA: Specific Weight or Specific Density) varies with temperature, pressure, content of impurities, etc...

## RoHS Directive <br> (Restriction of Hazardous Substances)

The European Directive 2002/95/EC dated January 23, 2003, is related to the restriction of use of some hazardous substances in electrical and electronic equipment.

Such directive (Art. 4.1) specifies that "from July $1^{\text {st }}$ of 2006, new electrical and electronic equipment put on the market must not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs) or polybrominated diphenil ethers (PBDEs)".

Remarks:

- The RoHS Directive mentioned above is a European Directive. As such, it applies only to equipment put on the market in the European Union.
- The RoHS Directive does not require any product marking. CE marking is not related to compliance to the RoHS Directive.
- The RoHS Directive does not require the producer of an equipment to obtain third party's certification.
- There are a number of products exempted from compliance to the Directive above, notably:
- Mercury in compact and straight fluorescent lamps (to certain limits)
- Lead used in compliant pin connector systems
- Lead and cadmium in optical glass
- Cadmium and its compounds in electrical contacts
- Batteries and accumulators
- Spare parts put on the market before July $1^{\text {st }}, 2006$

Note also that another Directive (76/769/EEC dated July $27^{\text {th }}$, 1976 and its modifications), applies to some extent to the restrictions in the use of hazardous substances, as it limits the use of pentabromodiphenyl ether and octabromodiphenyl ether in certain industrial and consumer products.

Products described in this catalogue, which fall under the provision of the Directive above, are compliant. For further detail, contact ITC.

More information on this matter can be obtained from the website:
http://ec.europa.eu/environment/waste/weee/legis_en.htm

This document is for information purposes only and has no legal standing. It should not be substituted for professional legal advice.

## TECHNICAL INFORMATION BULLETIN 2014-02

## IK Rating for Enclosures

The European standard EN 62262 - the equivalent of international standard IEC 62262 (2002) - relates to IK ratings. This is an international numeric classification for the degrees of protection provided by enclosures for electrical equipment against external mechanical impacts. It provides a means of specifying the capacity of an enclosure to protect its contents from external impacts. The IK Code was originally defined in European Standard BS EN 50102 (1995, amended 1998). Following its adoption as an international standard in 2002, the European standard was renumbered EN 62262.

Before the advent of the IK code, a third numeral had been occasionally added to the closely related IP Code on ingress protection, to indicate the level of impact protection - e.g. IP66(9). Nonstandard use of this system was one of the factors leading to the development of this standard, which uses a separate two numeral code to distinguish it from the old differing systems. The standard came into effect in October 1995 and conflicting national standards had to be withdrawn by April 1997.

EN 62262 specifies the way enclosures should be mounted when tests are carried out, the atmospheric conditions that should prevail, the number of impacts (5) and their (even) distribution, and the size, style, material, dimensions etc. of the various types of hammer designed to produce the energy levels required.

The following table gives the meaning of the IK rating code, related to the impact energy that the test element (enclosure) must withstand:

| IK code | IKOO | IKO1 | IKO2 | IK03 | IKO4 | IK05 | IKO6 | IK07 | IK08 | IK09 | IK10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Impact energy (joule) | $*$ | 0.14 | 0.2 | 0.35 | 0.5 | 0.7 | 1 | 2 | 5 | 10 | 20 |

Remember that a JOULE is the universal Unit for Energy (as such, for example, it cannot be converted to WATTS, which are units of Power). However, the power $P$ in watts (W) is equal to the energy $E$ in joules ( $J$ ), divided by the time period $t$ [the time during which the energy is applied] in seconds (s):

$$
P_{(\mathrm{w})}=E_{(\mathrm{J})} / t_{(\mathrm{s})}
$$

To get a feeling of how an IK10 impact test is made, watch this video on youtube:
https://www.youtube.com/watch?v=Uln9pRpmD0Q


[^0]:    Printed in Canada; 16-04

